add problem 33
This commit is contained in:
parent
a881f7518d
commit
ac22f6c944
|
@ -0,0 +1,128 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "eb246b50",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# [Digit Cancelling Fractions](https://projecteuler.net/problem=33)\n",
|
||||
"\n",
|
||||
"The search term for this concept is an [anomalous cancellation](https://en.wikipedia.org/wiki/Anomalous_cancellation). We can write a function that checks if an anomalous cancellation can happen by storing the digits of the numerator and denominator into four variables total, then checking four separate cases for if a digit can be \"cancelled.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d4e94963",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def digits(n):\n",
|
||||
" return (n // 10, n % 10)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def can_cancel_digits(n, d):\n",
|
||||
" x, y = digits(n)\n",
|
||||
" z, w = digits(d)\n",
|
||||
"\n",
|
||||
" f = QQ(n/d)\n",
|
||||
"\n",
|
||||
" if x == z and w != 0 and y/w == f:\n",
|
||||
" return True\n",
|
||||
" elif x == w and y/z == f:\n",
|
||||
" return True\n",
|
||||
" elif y == z and w != 0 and x/w == f:\n",
|
||||
" return True\n",
|
||||
" elif y == w and w != 0 and x/z == f:\n",
|
||||
" return True\n",
|
||||
"\n",
|
||||
" return False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a68309e9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We're only dealing with two-digit numerators and denominators, so this is easy to brute force."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "756614f7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{(16, 64), (19, 95), (26, 65), (49, 98)}"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"fractions = set()\n",
|
||||
"for n in range(10, 100):\n",
|
||||
" for d in range(n + 1, 100):\n",
|
||||
" if can_cancel_digits(n, d):\n",
|
||||
" fractions.add((n, d))\n",
|
||||
"\n",
|
||||
"fractions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6d3fb43b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"There's only four such fractions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "90f47a7f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"100"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prod(QQ(n/d) for (n, d) in fractions).denominator()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "SageMath 9.5",
|
||||
"language": "sage",
|
||||
"name": "sagemath"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue