eulerbooks/notebooks/problem0058.ipynb

96 lines
2.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "7edea8e5",
"metadata": {},
"source": [
"# [Spiral Primes](https://projecteuler.net/problem=58)\n",
"\n",
"It's the return of the Ulam spiral from [problem 28](https://projecteuler.net/problem=28) (this time we're going counter-clockwise, but that doesn't actually affect much).\n",
"\n",
"We can handle this problem with a couple of easy-to-derive formulas. First, for a spiral with side length $n$ (note that $n$ must be odd), the number of diagonal entries is $2n-1$. Furthermore, the outermost diagonal entries will be $n^2$, $n^2 - (n-1)$, $n^2 - 2(n-1)$, and $n^2 - 3(n-1)$.\n",
"\n",
"With these facts, we can just iterate over odd values of $n$ and calculate the four outermost diagonal entries. We'll keep a running total $p$ of how many primes we see and stop when $\\frac{p}{2n-1} < 0.1$."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4480be30",
"metadata": {},
"outputs": [],
"source": [
"def diagonal(n, k): return n^2 - k*(n-1)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "025d7d4b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"26241"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from itertools import count\n",
"\n",
"p = 0\n",
"for n in count(3, 2):\n",
" for k in range(0, 4):\n",
" if is_prime(diagonal(n, k)):\n",
" p += 1\n",
" \n",
" if p / (2*n - 1) < 0.1:\n",
" break\n",
"\n",
"n"
]
},
{
"cell_type": "markdown",
"id": "f181c6ae",
"metadata": {},
"source": [
"## Relevant sequences\n",
"* Numbers on diagonals: [A200975](https://oeis.org/A200975)\n",
"* Primes at right-angle turns on the Ulam spiral: [A172979](https://oeis.org/A172979)\n",
"\n",
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}