191 lines
4.7 KiB
Go
191 lines
4.7 KiB
Go
/*
|
|
Copyright © 2025 filifa
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
package cmd
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"log"
|
|
"math/big"
|
|
|
|
"github.com/spf13/cobra"
|
|
)
|
|
|
|
var modulus string
|
|
var tpf []string
|
|
|
|
func totient(n *big.Int) *big.Int {
|
|
N := new(big.Int).Set(n)
|
|
|
|
phi := new(big.Int).Set(N)
|
|
|
|
sqrtn := new(big.Int).Sqrt(N)
|
|
for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) {
|
|
mod := new(big.Int).Mod(N, i)
|
|
if mod.Cmp(big.NewInt(0)) != 0 {
|
|
continue
|
|
}
|
|
|
|
// phi -= phi // i
|
|
tmp := new(big.Int).Div(phi, i)
|
|
phi.Sub(phi, tmp)
|
|
|
|
for mod.Cmp(big.NewInt(0)) == 0 {
|
|
N.Div(N, i)
|
|
mod.Mod(N, i)
|
|
}
|
|
}
|
|
|
|
if N.Cmp(big.NewInt(1)) == 1 {
|
|
// phi -= phi // N
|
|
tmp := new(big.Int).Div(phi, N)
|
|
phi.Sub(phi, tmp)
|
|
}
|
|
|
|
return phi
|
|
}
|
|
|
|
func multiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int {
|
|
e := new(big.Int).Set(g)
|
|
var k *big.Int
|
|
for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) {
|
|
e.Mul(e, g)
|
|
e.Mod(e, modulus)
|
|
}
|
|
|
|
return k
|
|
}
|
|
|
|
func computeNaive(modulus *big.Int) (*big.Int, error) {
|
|
if modulus.Cmp(big.NewInt(1)) == 0 {
|
|
return big.NewInt(0), nil
|
|
}
|
|
|
|
phi := totient(modulus)
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
continue
|
|
}
|
|
|
|
order := multiplicativeOrder(g, modulus)
|
|
if order.Cmp(phi) == 0 {
|
|
return g, nil
|
|
}
|
|
}
|
|
|
|
return nil, errors.New("no primitive root")
|
|
}
|
|
|
|
func computeFromFactors(modulus *big.Int, tpf []string) (*big.Int, error) {
|
|
phi := big.NewInt(1)
|
|
factors := make(map[string]bool)
|
|
for _, s := range tpf {
|
|
p, ok := new(big.Int).SetString(s, 10)
|
|
if !ok {
|
|
return nil, errors.New("invalid input " + s)
|
|
}
|
|
|
|
phi.Mul(phi, p)
|
|
factors[p.Text(10)] = true
|
|
}
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
continue
|
|
}
|
|
|
|
isPrimitive := true
|
|
for p := range factors {
|
|
e := new(big.Int)
|
|
f, _ := new(big.Int).SetString(p, 10)
|
|
k := new(big.Int).Div(phi, f)
|
|
e.Exp(g, k, modulus)
|
|
|
|
if e.Cmp(big.NewInt(1)) == 0 {
|
|
isPrimitive = false
|
|
break
|
|
}
|
|
}
|
|
|
|
if isPrimitive {
|
|
return g, nil
|
|
}
|
|
}
|
|
|
|
return nil, errors.New("no primitive root")
|
|
}
|
|
|
|
func primitiveRoot(cmd *cobra.Command, args []string) {
|
|
m, ok := new(big.Int).SetString(modulus, 10)
|
|
if !ok {
|
|
log.Fatal("invalid input " + modulus)
|
|
}
|
|
|
|
root := new(big.Int)
|
|
var err error
|
|
if len(tpf) == 0 {
|
|
root, err = computeNaive(m)
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
} else {
|
|
root, err = computeFromFactors(m, tpf)
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
}
|
|
|
|
fmt.Println(root)
|
|
}
|
|
|
|
// primitiveRootCmd represents the primitiveRoot command
|
|
var primitiveRootCmd = &cobra.Command{
|
|
Use: "primitive-root -m M",
|
|
Short: "Compute a primitive root modulo n",
|
|
Long: `Compute a primitive root modulo n.
|
|
|
|
This command computes a value g such that, for all integers a coprime to n, g^k = a (mod n) for some k. In other words, this command computes a generator for the multiplicative group of integers modulo n.
|
|
|
|
For improved performance, provide the prime factorization of the totient of n with the -t flag.
|
|
|
|
Note that primitive roots only exist for the moduli 1, 2, 4, p^k, and 2p^k, where p is an odd prime. The totients of these numbers are 1, 1, 2, (p-1)*p^(k-1), and (p-1)*p^(k-1), respectively.`,
|
|
Run: primitiveRoot,
|
|
}
|
|
|
|
func init() {
|
|
rootCmd.AddCommand(primitiveRootCmd)
|
|
|
|
// Here you will define your flags and configuration settings.
|
|
|
|
// Cobra supports Persistent Flags which will work for this command
|
|
// and all subcommands, e.g.:
|
|
// primitiveRootCmd.PersistentFlags().String("foo", "", "A help for foo")
|
|
|
|
// Cobra supports local flags which will only run when this command
|
|
// is called directly, e.g.:
|
|
// primitiveRootCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle")
|
|
|
|
primitiveRootCmd.Flags().StringVarP(&modulus, "modulus", "m", "", "modulus")
|
|
primitiveRootCmd.MarkFlagRequired("modulus")
|
|
|
|
primitiveRootCmd.Flags().StringSliceVarP(&tpf, "totient-factorization", "t", make([]string, 0), "prime factorization of the totient of the modulus")
|
|
// TODO: add a check flag for verifying -t input is the totient, test for performance
|
|
}
|