move to workers dir

This commit is contained in:
filifa
2025-12-11 23:49:34 -05:00
parent 160cc7480b
commit df81091258
3 changed files with 1 additions and 1 deletions

View File

@@ -1,102 +0,0 @@
/*
Copyright (C) 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
importScripts("./math.js")
addEventListener("message", (message) => {
if (message.data.command === "compute") {
try {
compute(message.data.queue, message.data.m);
} catch(e) {
postMessage(e);
}
}
});
function binaryOpPop(stack) {
const b = stack.pop();
const a = stack.pop();
if (a === undefined || b === undefined) {
throw new Error("invalid expression");
}
return [a, b];
}
function compute(queue, modulus) {
const stack = [];
for (const token of queue) {
if (typeof token === "bigint") {
stack.push(token);
} else if (token === "+") {
let [a, b] = binaryOpPop(stack);
a %= modulus;
b %= modulus;
const c = (a + b) % modulus;
stack.push(c);
} else if (token === "-") {
let [a, b] = binaryOpPop(stack);
a %= modulus;
b %= modulus;
const c = (a - b) % modulus;
stack.push(c);
} else if (token === "*") {
let [a, b] = binaryOpPop(stack);
a %= modulus;
b %= modulus;
const c = (a * b) % modulus;
stack.push(c);
} else if (token === "/") {
let [a, b] = binaryOpPop(stack);
a %= modulus;
b %= modulus;
const binv = modinv(b, modulus);
const c = (a * binv) % modulus;
stack.push(c);
} else if (token === "u") {
let a = stack.pop();
if (a === undefined) {
throw new Error("invalid expression");
}
a *= -1n;
stack.push(a);
} else if (token === "^") {
const [a, b] = binaryOpPop(stack);
const c = modpow(a, b, modulus);
stack.push(c);
} else if (token === "sqrt") {
const a = stack.pop();
const s = modsqrt(a, modulus);
stack.push(s);
} else if (token === "ord") {
const a = stack.pop();
const r = ord(a, modulus);
stack.push(r);
}
}
if (stack.length !== 1) {
throw new Error("error evaluating expression");
}
let result = stack[0] % modulus;
if (result < 0n) {
result += modulus;
}
postMessage(result);
}

View File

@@ -1,222 +0,0 @@
/*
Copyright (C) 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
function xgcd(a, b) {
let [old_r, r] = [a, b];
let [old_s, s] = [1n, 0n];
let [old_t, t] = [0n, 1n];
while (r !== 0n) {
const quotient = old_r / r;
[old_r, r] = [r, old_r - quotient * r];
[old_s, s] = [s, old_s - quotient * s];
[old_t, t] = [t, old_t - quotient * t];
}
return [old_r, old_s, old_t];
}
function modinv(x, modulus) {
let [r, s, t] = xgcd(x, modulus);
if (r !== 1n) {
throw new Error(`no inverse exists - ${x} and ${modulus} are not coprime`);
}
if (s < 0n) {
s += modulus;
}
return s;
}
function modpow(base, exponent, modulus) {
if (exponent < 0n) {
const p = modpow(base, -exponent, modulus);
return modinv(p, modulus);
}
if (modulus === 1n) {
return 0n;
}
let result = 1n;
base %= modulus;
while (exponent > 0n) {
if (exponent % 2n === 1n) {
result *= base;
result %= modulus;
}
exponent >>= 1n;
base *= base;
base %= modulus;
}
return result;
}
function factorTwos(n) {
let s = 0;
while (n % 2n === 0n) {
n /= 2n;
s++;
}
return [n, s];
}
function witness(a, n) {
const [d, s] = factorTwos(n - 1n);
let x = modpow(a, d, n);
let y = null;
for (let i = 0; i < s; i++) {
y = modpow(x, 2n, n);
if (y === 1n && x !== 1n && x !== n - 1n) {
return true;
}
x = y
}
return y !== 1n
}
function randbigint() {
return BigInt(Math.floor(Math.random() * Number.MAX_SAFE_INTEGER))
}
function isprime(n) {
if (n === 2n) {
return true;
} else if (n % 2n === 0n) {
return false;
}
const trials = 10;
for (let i = 0; i < trials; i++) {
const a = randbigint() % (n - 1n) + 1n;
if (witness(a, n)) {
return false;
}
}
return true;
}
function legendreSymbol(a, p) {
let r = modpow(a, (p - 1n)/2n, p);
if (r === p - 1n) {
r = -1n;
}
return r;
}
function quadraticNonResidue(p) {
// TODO: consider randomizing this
for (let a = 2n; a < p; a++) {
if (legendreSymbol(a, p) === -1n) {
return a;
}
}
}
function tonelliShanks(n, p) {
const [q, s] = factorTwos(p - 1n);
const z = quadraticNonResidue(p);
let m = s;
let c = modpow(z, q, p);
let t = modpow(n, q, p);
let r = modpow(n, (q+1n)/2n, p);
while (true) {
if (t === 0n) {
return 0n;
} else if (t === 1n) {
return r;
}
let k = t;
let i = null;
for (i = 1; i < m; i++) {
k = modpow(k, 2n, p);
if (k === 1n) {
break;
}
}
if (i === m) {
throw new Error("radicand is not a quadratic residue of the modulus");
}
const e = BigInt(Math.pow(2, m - i - 1));
const b = modpow(c, e, p);
m = i;
c = modpow(b, 2n, p);
t = (t * c) % p;
r = (r * b) % p;
}
}
function modsqrt(n, modulus) {
// TODO: add support for prime power modulus (Hensel's lemma)
if (!isprime(modulus)) {
throw new Error("modulus must be prime to compute square root");
}
n %= modulus;
if (n < 0n) {
n += modulus;
}
if (n % modulus === 0n) {
return 0n;
} else if (modulus === 2n) {
return n % 2n;
} else if (legendreSymbol(n, modulus) !== 1n) {
throw new Error("radicand is not a quadratic residue of the modulus");
} else if (modulus % 4n === 3n) {
return modpow(n, (modulus+1n)/4n, modulus);
}
return tonelliShanks(n, modulus);
}
function ord(n, modulus) {
n %= modulus;
if (n < 0n) {
n += modulus;
}
const [g, s, t] = xgcd(n, modulus);
if (g !== 1n) {
throw new Error(`can't compute multiplicative order - ${n} and ${modulus} are not coprime`);
}
// NOTE: this is a hard problem, but there are more efficient approaches
let k = 1n;
let a = n;
while (a !== 1n) {
a *= n;
a %= modulus;
k += 1n;
}
return k;
}